Battery Boost: Lithium-Ion Anode Uses Self-Assembled Nanocomposite Materials to Increase Capacity

0

ScienceDaily — A new high-performance anode structure based on silicon-carbon nanocomposite materials could significantly improve the performance of lithium-ion batteries used in a wide range of applications from hybrid vehicles to portable electronics.

Produced with a “bottom-up” self-assembly technique, more about the new structure takes advantage of nanotechnology to fine-tune its materials properties, click addressing the shortcomings of earlier silicon-based battery anodes. The simple, low-cost fabrication technique was designed to be easily scaled up and compatible with existing battery manufacturing.

Details of the new self-assembly approach were published online in the journal Nature Materials on March 14.

“Development of a novel approach to producing hierarchical anode or cathode particles with controlled properties opens the door to many new directions for lithium-ion battery technology,” said Gleb Yushin, an assistant professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. “This is a significant step toward commercial production of silicon-based anode materials for lithium-ion batteries.”

The popular and lightweight batteries work by transferring lithium ions between two electrodes — a cathode and an anode — through a liquid electrolyte. The more efficiently the lithium ions can enter the two electrodes during charge and discharge cycles, the larger the battery’s capacity will be.

Read the full article…

Martin Swinney

Latest posts by Martin Swinney (see all)

Share.

About Author

Comments are closed.